》复习资料/00_《机器学习(周志华)》复习资料_封面首图_学霸英雄_www.xuebayingxiong.com.png)
第 1 页 / 共 19 页
》复习资料/01_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)各章个人笔记_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 2 页 / 共 19 页
》复习资料/01_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)各章个人笔记_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 3 页 / 共 19 页
》复习资料/02_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)试题及答案_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 4 页 / 共 19 页
》复习资料/02_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)试题及答案_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 5 页 / 共 19 页
》复习资料/03_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(1)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 6 页 / 共 19 页
》复习资料/03_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(1)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 7 页 / 共 19 页
》复习资料/04_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(2)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 8 页 / 共 19 页
》复习资料/04_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(2)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 9 页 / 共 19 页
》复习资料/05_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(3)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 10 页 / 共 19 页
》复习资料/05_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(3)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 11 页 / 共 19 页
》复习资料/06_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(4)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 12 页 / 共 19 页
》复习资料/06_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(4)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 13 页 / 共 19 页
》复习资料/07_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(5)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 14 页 / 共 19 页
》复习资料/07_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(5)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 15 页 / 共 19 页
》复习资料/08_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(6)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 16 页 / 共 19 页
》复习资料/08_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(6)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 17 页 / 共 19 页
》复习资料/09_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(7)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 18 页 / 共 19 页
》复习资料/09_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(7)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 19 页 / 共 19 页

周志华《机器学习》西瓜书重点笔记
周志华《机器学习》西瓜书重点笔记 《机器学习》这本书,又称“西瓜书”,是国内机器学习入门的经典教材。理解其核心概念对于快速掌握机器学习至关重要。本文将梳理“周志华《机器学习》西瓜书”中的关键内容,帮助读者构建机器学习的基础。 模型与学习 本书的核心在于将机器学习问题理解为“学习”。学习分为监督学习、无监督学习和强化学习三大类。监督学习则进一步细分为线性回归、逻辑回归、神经网络等。其中,线性回归是建立模型预测连续值的简单方法,其核心在于最小化损失函数,例如均方误差。逻辑回归用于解决二分类问题,其模型输出的是样本属于某个类别的概率。 模型评估与泛化 模型的训练完成后,需要评估其性能。常用的评估指标包括均方误差(MSE)、交叉熵损失等。更重要的是,需要关注模型在未见过数据上的泛化能力。过拟合是指模型在训练数据上表现很好,但在新数据上表现很差;欠拟合则是模型无法很好地捕捉数据中的模式。 关键概念 除了模型与学习、模型评估外,本书还深入讲解了特征工程、正则化、偏差-方差分解等重要概念。例如,正则化通过增加损失函数中包含惩罚项,可以防止模型过拟合。偏差-方差分解则帮助我们理解模型性能受哪些因素的影响。 总结 “西瓜书”的重点在于建立对机器学习的直观理解,以及掌握常用的模型和评估方法。理解上述关键概念是学习机器学习的第一步,也是构建更深入知识体系的基础。
展开
机器学习(周志华)
2025-04-15
21次阅读
资料获取方式
温馨提示:登录学霸英雄官网后可获取更多大学生必备科目和考证等复习备考资料!