
第 1 页 / 共 21 页

第 2 页 / 共 21 页

第 3 页 / 共 21 页

第 4 页 / 共 21 页

第 5 页 / 共 21 页

第 6 页 / 共 21 页

第 7 页 / 共 21 页

第 8 页 / 共 21 页

第 9 页 / 共 21 页

第 10 页 / 共 21 页

第 11 页 / 共 21 页

第 12 页 / 共 21 页

第 13 页 / 共 21 页

第 14 页 / 共 21 页

第 15 页 / 共 21 页

第 16 页 / 共 21 页

第 17 页 / 共 21 页

第 18 页 / 共 21 页

第 19 页 / 共 21 页

第 20 页 / 共 21 页

第 21 页 / 共 21 页

12页线性代数笔记登GitHub热榜,还获得了Gilbert Strang的课程讲义和评论。
12页线性代数笔记登GitHub热榜,还获得了Gilbert Strang的课程讲义和评论。 你绝对不会相信!一个只包含12页笔记的线性代数整理方案,竟然在GitHub上火爆全网,甚至还得到了著名麻省理工学院教授Gilbert Strang的课程讲义和亲切的评论。这可不是什么小事情,而是线性代数学习者们共同的“圣经”正在被重新诠释! 线性代数,这门看似枯燥的学科,实则贯穿于物理、计算机科学、工程学等众多领域。核心概念包括向量、矩阵、线性变换,以及解线性方程组。 就像Gilbert Strang在《线性代数》中反复强调的,理解矩阵的乘法运算是关键,这定义了线性变换的本质。 掌握矩阵的逆矩阵和特征值/特征向量更是解线性方程组的基石。 这个GitHub上的12页笔记,以精炼的文字和清晰的图表,总结了这些核心内容。 笔记并没有试图覆盖所有细节,而是集中了线性代数学习者们在学习过程中遇到的“难点”和“痛点”, 比如矩阵的秩、行列式计算、以及向量空间的概念。 更令人惊喜的是,笔记的作者在GitHub上积极与用户互动, 并积极听取反馈, 甚至成功获得了Gilbert Strang对他的笔记的肯定和指导。 Strang教授在评论中表示:“这是一个非常好的总结,对于初学者理解线性代数的关键概念非常有帮助。 建议大家在学习过程中多加练习,并深入理解每个概念背后的几何意义。” 这无疑是对这位作者的极高评价! 这个案例证明了,线性代数学习不在于死记硬背, 关键在于理解其核心概念,并将其应用到实际问题中。 12页笔记的火爆,也激励着更多人积极探索线性代数的奥秘。 赶紧去GitHub上看看吧,也许它能帮助你解锁线性代数的秘密!
展开
线性代数
2025-07-31
5次阅读
资料获取方式
温馨提示:登录学霸英雄官网后可获取更多大学生必备科目和考证等复习备考资料!