》复习资料/00_《机器学习(周志华)》复习资料_封面首图_学霸英雄_www.xuebayingxiong.com.png)
第 1 页 / 共 19 页
》复习资料/01_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)各章个人笔记_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 2 页 / 共 19 页
》复习资料/01_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)各章个人笔记_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 3 页 / 共 19 页
》复习资料/02_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)试题及答案_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 4 页 / 共 19 页
》复习资料/02_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)试题及答案_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 5 页 / 共 19 页
》复习资料/03_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(1)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 6 页 / 共 19 页
》复习资料/03_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(1)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 7 页 / 共 19 页
》复习资料/04_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(2)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 8 页 / 共 19 页
》复习资料/04_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(2)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 9 页 / 共 19 页
》复习资料/05_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(3)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 10 页 / 共 19 页
》复习资料/05_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(3)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 11 页 / 共 19 页
》复习资料/06_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(4)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 12 页 / 共 19 页
》复习资料/06_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(4)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 13 页 / 共 19 页
》复习资料/07_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(5)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 14 页 / 共 19 页
》复习资料/07_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(5)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 15 页 / 共 19 页
》复习资料/08_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(6)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 16 页 / 共 19 页
》复习资料/08_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(6)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 17 页 / 共 19 页
》复习资料/09_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(7)_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 18 页 / 共 19 页
》复习资料/09_《机器学习(周志华)》复习资料_《机器学习(周志华)》版)重点笔记(7)_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 19 页 / 共 19 页

纯干货笔记(五)|机器学习(周志华)《机器学习》期末知识点简要总结_机器学习周志和期末
纯干货笔记(五)|机器学习(周志华)《机器学习》期末知识点简要总结_机器学习周志和期末 这期笔记,直接奉上《机器学习》(周志华)这本书里,我个人觉得最核心、也最容易忘记的期末知识点。想想看,周志华老师的这本书,已经涵盖了机器学习的方方面面,想要精通,确实需要好好复习! 首先,不得不提到监督学习。周志华老师强调,监督学习的核心在于模型与训练数据的映射关系,即找到一个函数f(x)能够准确预测输出y。模型选择、损失函数、优化算法,这些都是监督学习的基石。比如,线性回归、逻辑回归,这些都是直接对应周志华书中经典章节的例子。 接着,回归和分类问题,周志华对它们进行了详细的剖析。线性模型简单有效,但泛化能力有限;多项式模型可以捕捉非线性关系,但容易过拟合。理解过拟合和欠拟合的概念,掌握正则化技术(L1, L2),这些都是避免模型失效的关键。 不容忽视的是,周志华在无监督学习部分,提倡“算法的理解比模型本身更重要”。聚类算法(K-Means、层次聚类),降维技术(PCA、SVD),这些方法不仅能解决实际问题,更能帮助我们理解数据的内在结构。 最后,周志华特别强调了模型的评估。准确率、召回率、F1-score等指标,这些都是评估模型性能的重要工具。更重要的是,我们要认识到这些指标的局限性,并结合实际场景进行分析。 总之,《机器学习》这本书就像一个百科全书,周志华老师的视角独到而深刻。希望这篇笔记能帮助大家在期末考试中取得好成绩! 记住,理解概念,多做练习,才是最重要的!
展开
机器学习(周志华)
2025-07-21
13次阅读
资料获取方式
温馨提示:登录学霸英雄官网后可获取更多大学生必备科目和考证等复习备考资料!